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Linkage Analysis in the Presence of Errors III: Marker Loci and Their Map
as Nuisance Parameters
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In linkage and linkage disequilibrium (LD) analysis of complex multifactorial phenotypes, various types of errors
can greatly reduce the chance of successful gene localization. The power of such studies—even in the absence of
errors—is quite low, and, accordingly, their robustness to errors can be poor, especially in multipoint analysis. For
this reason, it is important to deal with the ramifications of errors up front, as part of the analytical strategy. In
this study, errors in the characterization of marker-locus parameters—including allele frequencies, haplotype fre-
quencies (i.e., LD between marker loci), recombination fractions, and locus order—are dealt with through the use
of profile likelihoods maximized over such nuisance parameters. It is shown that the common practice of assuming
fixed, erroneous values for such parameters can reduce the power and/or increase the probability of obtaining false
positive results in a study. The effects of errors in assumed parameter values are generally more severe when a
larger number of less informative marker loci, like the highly-touted single nucleotide polymorphisms (SNPs), are
analyzed jointly than when fewer but more informative marker loci, such as microsatellites, are used. Rather than
fixing inaccurate values for these parameters a priori, we propose to treat them as nuisance parameters through
the use of profile likelihoods. It is demonstrated that the power of linkage and/or LD analysis can be increased
through application of this technique in situations where parameter values cannot be specified with a high degree
of certainty.

Introduction

In linkage and linkage-disequilibrium (LD) analysis, in-
vestigators are painfully aware of the consequences of
misspecifying the mode of inheritance of the phenotype
(see Risch and Giuffra 1992; Göring and Terwilliger
2000a) and of genotyping errors at the marker loci (see
Smith 1937; Lathrop et al. 1983; Terwilliger et al. 1990;
Buetow 1991; Göring and Terwilliger 2000b). It is also
well known that incorrect specification of marker-locus
allele frequencies can lead to a systematic increase in
false-positive rates when pedigrees are ascertained on the
basis of the phenotype under study (see Ott 1992; Ter-
williger and Ott 1994, exercise 28). In general, whenever
parameter values are misspecified, the properties of like-
lihood-based analysis are likely to suffer: power may be
diminished, false positive rates may be increased, and
parameter estimates may be biased and/or inconsistent.
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Errors in the assignment of trait-locus genotypes can
be a function of incorrect assumptions about the mode
of inheritance, errors in characterization of the phe-
notypes, and biases resulting from the ascertainment
scheme. To deal with some types of errors in the ge-
notype assignment at the trait locus, we have elsewhere
proposed the use of complex-valued recombination
fractions (Göring and Terwilliger 2000a), which can be
applied in both “model-based” and “model-free” anal-
ysis of linkage and/or LD (Göring and Terwilliger
2000c). Marker-locus genotype assignment errors can
result from laboratory errors (such as genotyping errors,
sample mislabeling, etc.), incorrect assumptions about
inheritance parameters of the marker loci (such as ge-
notype frequencies, genetic maps, etc.), and so on. We
have elsewhere introduced hypercomplex-valued re-
combination fractions as a means of compensating for
both random and systematic laboratory errors in
marker-locus genotyping (Göring and Terwilliger
2000b). In this manuscript, we propose the use of profile
likelihoods maximized over nuisance parameters of the
marker loci to circumvent the pathologies that result
from setting these parameters to fixed, but erroneous,
values a priori.

To test for correlations between a set of observed
marker-locus genotypes, GM, and disease phenotypes,
Ph, on a data set of any size and structure, one can
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Table 1

Overview of the Parameters Determining the Likelihood in Model-Based Linkage and/or LD Analysis

Probability Term Parameters

P(PhFg )D For a qualitative trait: (i.e., penetrances)P(PhenotypeFGenotype)
For a quantitative trait: , or, in “model-free” “pseudomarker” analysis, P(meiosis informative)2f(m,j FGenotype)

P(g Fg )D M Disease-locus allele frequencies, denoted by pD

Linkage between marker and disease loci, denoted by v (or xD in multipoint analysis)
LD between marker and disease loci, denoted by dD

Disease-locus heterogeneity and epistasis, denoted by bi

Deviations from Hardy-Weinberg equilibrium (e.g., inbreeding coefficient, population substructure), denoted by F ,Fis st

P(g ,G )M M Marker-locus allele frequencies, denoted by pi

Intermarker LD, denoted by dM

Marker-locus map positions (including locus order), denoted by xi

Deviations from Hardy-Weinberg equilibrium (e.g., inbreeding coefficient, population substructure), denoted by F ,Fis st

NOTE.—The likelihood is formulated as , where Ph denotes the set of observed trait phe-P(Ph,G ) = S P(g ,G )S P(PhFg )P(g Fg )M g M M g D D MM D

notypes, gD a set of possible underlying trait-locus genotypes, GM the set of observed marker-locus genotypes, and gM a set of possible
underlying marker-locus genotypes for all individuals in the data set jointly. Bold-faced symbols represent vectors.

compute the likelihood, , as a functionL ∝ P (Ph,G )M

of numerous biological parameters, by partitioning over
all possible disease-locus genotypes for all individuals
in a data set, gD, as

P(Ph,G ) = P(PhFG )P(G )M M M

= P(PhFg )P(g FG )P(G ) .� D D M M
gD

is a function of the mode-of-inheritance as-P(PhFg )D

sumed for the analysis; is a function of theP(g FG )D M

disease-locus genotype frequencies, as well as linkage
and LD between the disease and marker loci; and

is a function of the marker-locus genotype fre-P(G )M

quencies. Table 1 provides a more complete enumera-
tion of parameters that can affect each term in the like-
lihood formula above. As shown elsewhere (Göring and
Terwilliger 2000c), this “model-based” likelihood for-
mulation can be generalized to “model-free” analysis
as well, so that the techniques proposed here are directly
applicable to either situation. For simplicity, we derive
the theory and practice for “model-based” analysis
alone.

In principle, the likelihood can be maximized over
any subset of these underlying parameters. The values
of some parameters, in particular the recombination
fraction between the disease and the marker locus (or,
equivalently, the map position of the trait locus in re-
lation to several marker loci analyzed jointly), may be
the object of inference, whereas the values of other pa-
rameters, such as allele frequencies of the marker loci,
are typically not of inferential relevance and can there-
fore be treated as nuisance parameters. In any case, the
likelihood can be maximized over parameters of interest
and nuisance parameters alike. A likelihood maximized
over a set of nuisance parameters is referred to as a

profile likelihood (see Kalbfleisch and Sprott 1970; Roy-
all 1997). Many of the specific likelihoods to be dis-
cussed in this manuscript are summarized in table 2,
which states explicitly, for each of the enumerated like-
lihoods, what is assumed about the underlying biolog-
ical phenomena, which parameters are fixed, and over
which parameters the likelihood is maximized. For sta-
tistical inference, likelihoods maximized under two
nested hypotheses may be compared to each other by
likelihood ratio tests. The application of profile likeli-
hoods to marker-locus parameters in linkage and/or LD
analysis will be the primary focus of this paper.

Marker-locus Genotype Frequencies—Theoretical
Model

In the likelihood formulation above,

P(Ph,G ) = P(PhFg )P(g FG )P(G ) ,�M D D M M
gD

GM represents the observed marker-locus genotypes. In
reality, however, the actual genotypes are often not
known precisely for all individuals, since ungenotyped
individuals are present in most data sets (especially for
late-onset diseases), phase is often unknown for at least
some individuals, and genotyping errors are unavoidable
in practice. If we define the vector gM to represent a set
of marker-locus genotypes (with phase) for all individ-
uals in the data set, the likelihood can be partitioned
over all admissible vectors, as

P(Ph,G ) = P(g ,G ) P(PhFg )P(g Fg )� �M M M D D M
g gM D

is a function of the marker-locus genotype fre-P(g ,G )M M

quencies in the population (which could, for example,
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Table 2

Likelihoods That Can Be Compared in Likelihood-Ratio Tests

A. Two-Point Analysis

MARKER-
DISEASE

CORRELATIONS

v dD LIKELIHOODLinkage LD

No No 0.5 0 max L(v = 0.5,d = 0,p )D i
pi

Yes No ṽ 0 max L(v,d = 0,p )D i
v,pi

No Yes 0.5 d̃D max L(v = 0.5,d ,p )D i
d ,pD i

Yes Yes v̂ d̂D max L(v,d ,p )D i
v,d ,pD i

B. Multipoint Analysis: Additional Parameters

MARKER-
MARKER

CORRELATIONS

xi dM LIKELIHOODaMap LD

Known No Fixed 0 max L(x ,x ,d = 0,d = 0,p )D i D M i
x ,pD i

Known Yes Fixed d̂M max L(x ,x ,d = 0,d ,p )D i D M i
x ,d ,pD M i

Unknown No x̃i 0 max L(x ,x ,d = 0,d = 0,p )D i D M i
x ,x ,pD i i

Unknown Yes x̃i d̂M max L(x ,x ,d = 0,d ,p )D i D M i
x ,x ,d ,pD i M i

NOTE.—The top half of the table lists the possible hypotheses
regarding linkage and/or LD in two-point analysis of disease phe-
notypes and genotypes of a single marker locus. In the bottom
half of the table, the additional parameters involved in multipoint
analysis are enumerated, for the case of linkage but no LD be-
tween the disease locus and the marker loci (the likelihood could,
of course, be computed for each of the other hypotheses from
the top half of this table as well). Note that all bold-faced symbols
represent parameter vectors (e.g., pi represents the allele frequency
distributions for one or more marker loci). In all cases shown
here, the likelihood is assumed to be maximized over the marker-
locus allele frequencies.

a Disease and marker loci linked, .d = 0D

be parameterized as a function of the marker-locus allele
frequencies and the inbreeding coefficient, Fis [Wright
1922]) and errors in the marker-locus genotype assign-
ment (which could, for example, be parameterized using
imaginary components of hypercomplex recombination
fractions [Göring and Terwilliger 2000b]). The main fo-
cus of statistical inference, however, is whether

, independent of gM (i.e., is there linkageP(g Fg ) = P(g )D M D

or LD between the disease and marker loci or not?).
and serve as weighting functions forP(PhFg ) P(g ,G )D M M

the many possible underlying marker- and disease-locus
genotype combinations, between which one tests for cor-
relations in linkage and/or LD analysis. If these weights
are inaccurate, the correlations between the underlying
disease and marker-locus genotypes, , will beP(g Fg )D M

inappropriately quantified in the likelihood calculation,
leading to pathological statistical behavior.

Pedigrees generally are ascertained on the basis of the
phenotype to be studied, in such a way that there is a
preponderance of affected individuals in the bottom
generation(s) (in affecteds-only analyses, by definition,
the only individuals who are phenotyped are affected).
An apparent segregation bias results (under any as-
sumed genetic model) at the disease locus, since parents
who are heterozygous at the disease locus (D/�) would
appear to have preferentially transmitted disease-pre-
disposing alleles (D) to their offspring, as most of them
are affected as a consequence of the ascertainment
scheme. If there were a similar segregation distortion at
the marker locus for some reason independent of the
trait, false-positive evidence of linkage and/or LD may
result (in contrast to the claim of Ott [1999], p. 270).
This is because the offspring would appear to have in-
herited the same marker-locus allele identical by descent
more often than would be expected by chance, just as
they appear to have preferentially inherited disease al-
leles identical by descent as a consequence of the as-
certainment. This increased allele sharing at both dis-
ease and marker loci would likely be interpreted as
evidence of linkage. Let us now assume that all children
in a nuclear pedigree are homozygous for the same allele
at a marker locus and that their parents have not been
genotyped. Under the assumption that this allele is com-
mon, this marker locus would provide little linkage in-
formation, since the parents themselves would likely be
homozygous for this allele, such that one cannot dis-
tinguish identity by state from identity by descent
among the marker-locus alleles inherited by the off-
spring. However, if this allele were erroneously assumed
to be rare, the parents would most likely be inferred to
be heterozygous for this allele, which would then lead
to the erroneous inference that the children received the
allele identical by descent. One can see that incorrect
marker-locus allele frequencies assumptions can lead to
an apparent segregation bias at the marker locus. If the
nuclear pedigree had been ascertained on the basis of
disease, such that a preponderance of the offspring are
affected, this would bias the results of a linkage analysis
towards false-positive evidence of linkage, as explained
above. Note that this will not generally lead to high
rates of false positives in linkage analysis when pedi-
grees are randomly ascertained, independent of the phe-
notype. In general, errors leading to an apparent seg-
regation bias in a data set do not lead to false positives
when they occur at only one locus, but when they occur
at both loci, between which correlations are being
tested, problems are ubiquitous (Smith 1953; Clerget-
Darpoux et al. 1986).

In likelihood analysis of pedigrees and/or singletons,
it has been advised to estimate the marker-locus allele
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frequencies directly from the data (e.g., Falk and Ru-
binstein 1987; Boehnke 1991). Because allele frequen-
cies are parameters of the likelihood, the likelihood can
be maximized over them. Since ascertainment of pedi-
grees is performed independent of the marker-locus gen-
otypes, there is no bias in estimating these parameters
on the same data set to be used in subsequent linkage
analysis. However, because the marker-locus allele fre-
quencies are used to weight the correlations between
marker- and disease-locus genotypes, as described
above, the marker-locus allele frequencies are not or-
thogonal to the parameters used to quantify linkage and
LD (which correlate the marker- and disease-locus gen-
otypes). Therefore, the marker-locus allele frequencies
should be estimated jointly with the linkage and LD
parameters, whenever possible. A general technique for
dealing with such unknown parameter values would be
to compute the profile likelihood, maximized over the
marker-locus allele frequencies as nuisance parameters.
The LOD-score statistic testing for linkage would be
computed as

Z = log {[max L(v,p )]}/[max L(v = 0.5,p )]}p 10 v,p i p ii i

(see Terwilliger and Ott 1994, p. 186), where v repre-
sents the correlation caused by linkage between marker-
and disease-locus genotypes in pedigrees and pi denotes
the vector of marker-locus allele frequencies (see Eguchi
[1991] and Chin [1992] for more details about the use
of nuisance parameters in likelihood ratio tests). The
likelihoods in numerator and denominator would be
independently maximized over the frequencies of all
marker-locus alleles. As verified below by simulation,

asymptotically converges to a 50-50 mixtureZp2 ln (10 )
of point mass at 0 and .2x(1)

In populations with substantial substructure, individ-
uals may have homozygous genotypes (at all loci) more
often than would be expected under Hardy-Weinberg
equilibrium (Hardy 1908, Weinberg 1908). If this is not
taken into account, it can likewise lead to false-positive
evidence of linkage. The reason is similar to the one
given above for errors in assumed allele frequencies: too
many meioses among the ungenotyped individuals in
upper generations of a pedigree will be inferred to be
informative, leading to an overestimate of the proba-
bility that two affected individuals share marker-locus
alleles identical by descent. Since alleles of the disease
locus are inferred to be shared identical by descent at
inflated frequencies, because of the aforementioned as-
certainment bias, false-positive evidence of correlations
between trait and marker loci would obtain. One can
formulate the likelihood as a function of the inbreeding
coefficient, Fis (Wright 1922), which can also be treated
as a nuisance parameter in the analyses (Agarwala et
al. 1999; Hovatta et al. 1999).

In practice, maximizing the likelihood over a large
number of parameters can be very slow and computa-
tionally inefficient when performed using the ILINK
program (Lathrop et al. 1984; Cottingham et al. 1993),
especially if the starting values are not close to their
maximum-likelihood estimates. Particularly when the
number of marker-locus alleles is large, crude allele-
counting procedures should be used to select reasonable
starting values for marker-locus allele-frequency esti-
mation with ILINK. Simple ad-hoc algorithms include
counting the occurrences of each allele among typed
founders (i.e., “gene counting” [Smith 1957]), or, if a
substantial portion of founders is not genotyped, count-
ing the occurrences of each allele in all genotyped in-
dividuals in the data set as if they were unrelated (as
done, for example, by the DOWNFREQ program [Ter-
williger 1994]). These allele-frequency estimates should
be close to the maximum-likelihood estimates obtained
when no linkage or LD is assumed between trait and
marker loci. A more precise, but computationally in-
tensive, procedure would be to maximize the likelihood
of the marker-locus data alone (leaving the disease out
of the analysis for the moment), which would yield
marker-locus allele -frequency estimates that are iden-
tical to those obtained in joint analysis of disease phe-
notypes and marker-locus genotypes in the absence of
linkage (since, when , the marker- and disease-v = .5
locus genotypes are inherited independently of one an-
other). Using the same estimates to compute the pedi-
gree likelihood under linkage would be conservative,
since the numerator of the likelihood ratio would be
less than or equal to that obtained when maximized
over the marker-locus allele frequencies and recombi-
nation fraction jointly (see Boehnke 1991; Terwilliger
and Ott 1994, p. 186). Note that estimation of the allele
frequencies jointly with the recombination fraction un-
der the alternative hypothesis of linkage and use of these
estimates to also compute the null-hypothesis likelihood
of no linkage would lead to an anticonservative statistic
and is not advised.

Marker-Locus Genotype Frequencies—Practice

For an illustration of the importance of having reliable
estimates of the marker-locus allele frequencies, consider
the pedigree shown in figure 1, in which a dominant
disease is segregating and only the two affected individ-
uals in the bottom generation are genotyped at the
marker locus. The linkage information in this pedigree
is highly dependent on the assumed allele frequency of
the 1 allele. If this allele were, in reality, common in the
population, this pedigree would contain almost no in-
formation about linkage, since the probability of the two
genotyped individuals inheriting the same 1 allele iden-
tical by descent—even under the assumption of tight
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Figure 1 Example pedigree demonstrating the importance of
marker-locus allele frequencies in linkage analysis. Assuming a rare
dominant disease with no phenocopies, the maximum LOD score in
this pedigree is 0 when the frequency of marker-locus allele 1 is set
to its correct value of .5. If the frequency of the 1 allele were set
erroneously to .0001, the maximum LOD score in this pedigree would
be inflated to 1.8. In multipoint analysis, the marker-marker LD cor-
relations also play a role (see text for details).

Figure 2 False-positive LOD-score distribution as a function of
the number of marker loci with incorrect allele-frequency estimates
analyzed jointly. In the simulation, the disease locus is unlinked to
diallelic marker(s) having true allele frequencies of .2 and .8. Shown
are the results using the profile-likelihood approach ( ) and whenZp

equal allele frequencies of .5 were falsely assumed for each of the 1
(Z1), 2 (Z2), 3 (Z3), or 4 (Z4) marker loci analyzed jointly. While the
LOD-score distribution of the profile likelihood approach fits the pre-
dicted 0.5x2 distribution well, the false positive tendency clearly in-
creases as the number of marker loci with fixed and erroneous assumed
marker-locus allele frequencies considered jointly increases. The results
are based on 100 simulated replicates of 350 affected sib-pairs with
ungenotyped parents.

linkage—would be much smaller than the probability
that they inherited the allele from different founders,
since it may have entered the pedigree multiple times.
If, however, the 1 allele were rare, the pedigree would
provide a lot of linkage information, as the two geno-
typed individuals would be inferred to have inherited
the same 1 allele identical by descent from a common
ancestor. Under the assumption of a rare dominant dis-
ease with no phenocopies, if the frequency of marker-
locus allele 1 were 0.5 in reality and were set to this
correct value in the analysis, then the maximum LOD
score in this pedigree would be 0, whereas, if the fre-
quency of the allele were set erroneously to be .0001,
then the maximum LOD score in this pedigree would
be 1.8—a rather striking difference! At first glance, this
example may seem exaggerated. It should be noted,
however, that allele-frequency estimates obtained from
the literature will often not be applicable to one’s own
data, since in most cases they are obtained from a pop-
ulation other than from which one’s own pedigrees have
been ascertained. Since the allele-frequency distributions
for the vast majority of loci studied differ significantly
between populations—indeed, the allele-frequency dif-
ferences themselves can be used to reconstruct popula-
tion history (see Cavalli-Sforza et al. 1994)—it is unwise
to assume that any a priori estimates of allele frequencies
not derived from the study population will be appro-
priate (see Hovatta et al. 1999 for an empirical example
in which failure to allow for population substructure
would have led to a spuriously high rate of false
positives).

To demonstrate that the false-positive tendency
caused by fixed and erroneous marker-locus allele fre-
quencies can increase with the number of marker loci
jointly analyzed in multipoint analysis, a data set of 350

affected sib-pairs with untyped parents was simulated,
assuming absence of linkage between the marker and
disease loci. A set of diallelic marker loci, separated
serially by pairwise recombination fractions of .05, were
simulated assuming true allele frequencies of .8 and .2
for the alleles of each marker locus. In the analysis,
however, the alleles were incorrectly assumed to be
equally frequent; that is, . In figure 2,P(1) = P(2) = 0.5
the cumulative distribution functions are shown graph-
ically for the LOD scores obtained using a “pseudo-
marker” algorithm (analogous to “model-free” affected
sib-pair analysis; see Göring and Terwilliger 2000c).
While the LOD scores computed by treating the un-
known marker-locus allele frequencies using profile like-
lihoods give a good fit to the theoretical null-hypothesis
distribution of (Nor-Z 2p2 ln (10 ) ∼ {0.5(0) � 0.5x }(1)

dheim 1984; Tai and Chen 1989), the distribution of
the LOD-score statistic shifts dramatically towards the
right as the number of marker loci with fixed incorrect
specifications of allele frequencies increases.

Correlations between Genotypes of Multiple Marker
Loci—Theory

To describe the relationship between the genotypes of
multiple marker loci, one needs to allow for correlations
between them (see bottom of table 2). Normally, one
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specifies parameter values that quantify these relation-
ships, including marker-marker LD (as expressed in
terms of the haplotype frequencies), and the marker-
locus genetic map (i.e., marker-locus order and inter-
marker recombination fractions).

Marker-Marker LD

Let us first focus on the effects of errors in specification
of marker-marker LD (i.e., marker-locus haplotype fre-
quencies), which can be understood by direct analogy
to the effects of erroneous marker-locus allele frequency
assumptions as discussed above. If one falsely assumes
a common haplotype to be rare, it will likely be found
more often than expected in the data set, leading to the
false inference that this haplotype was inherited identical
by descent by many pedigree members (many of whom
will be affected with the disease as well, owing to non-
random pedigree ascertainment). This may lead to false-
positive evidence that this haplotype cosegregates with
the disease and ultimately to false conclusions of linkage
(by analogy to Ott 1992) and LD (by analogy to the
well-known problem of “population stratification”—see
Chase [1977]). The profile likelihood-ratio test for link-
age between the disease locus and the marker loci can
be written as

max L(x ,x ,p ,d = 0,d )x ,p ,d D i i D MD i Mlog ,10 max L(x = ��,x ,p ,d = 0,d )p ,d D i i D Mi M

where xi represents the map of marker loci, xD the map
position of the disease locus relative to the marker loci
( if the disease locus is unlinked to the markerx = ��D

loci), represents the LD relationships among thedM

marker loci, the LD relationships between the diseasedD

and marker loci, and pi represents the marker-locus allele
frequency distributions over all marker loci. The distri-
bution of this statistic is similar to that of , with theZp

exception that a multipoint LOD score has an intrinsic
distribution that is a function of the length of the marker-
locus map being analyzed (see Dupuis et al. 1995; Gö-
ring and Terwilliger 2000a; Göring et al. 1997). The
distribution theory for an analogous statistical test based
on “pseudomarkers” is covered by Göring and Terwil-
liger (2000c).

As in the case of single-marker-locus allele-frequency
estimation, the ILINK program (Lathrop et al. 1984)
can be used to maximize the likelihood over marker-
marker haplotype frequencies, as described by Terwil-
liger and Ott (1994, chapter 23). ILINK has recently
been extended to handle haplotype-frequency estimation
conditional on fixed allele frequencies of the trait locus
(in FASTLINK version 4.1P) (Cottingham et al. 1993).
In practice, however, it may be difficult to obtain con-
vergence to the maximum-likelihood estimates, unless

the starting values for the haplotype frequencies are rea-
sonably close to these values. By analogy to the approach
suggested above for marker-locus allele-frequency esti-
mation, one could obtain crude marker-marker haplo-
type-frequency estimates by a “gene-counting” proce-
dure based on observed multiple marker-locus genotypes
of all typed founders (as implemented, for example, in
the EH program [Terwilliger and Ott 1994, chapters
23–24]). Alternatively, if there are a large number of
ungenotyped founders, one could estimate haplotype fre-
quencies on the basis of all genotyped individuals in the
gene-counting procedure, as if they represented a ran-
dom sample of unrelated individuals. While the likeli-
hood-ratio tests performed by the EH program would
in this situation be invalid for inference about marker-
marker LD, the haplotype frequency estimates would
provide reasonable starting values for the likelihood
maximization by ILINK. (If one wanted to allow for LD
not just between the marker loci themselves but also
between the marker loci and the disease locus, one
should hold the disease-locus allele frequencies constant,
as described in Terwilliger and Ott 1992).

If, in the analysis, one wanted to use fixed marker-
locus haplotype frequencies, obtained from a different
source (e.g., Hellsten et al. 1993; Tienari et al. 1994),
it is important that these estimates be representative of
the genetic population from which one’s own sample
was obtained. Note that there is great variation between
populations in the nature and strength of LD between
loci, as a function of various population characteristics
(see Clark et al. 1998; Terwilliger and Weiss 1998; Ter-
williger et al. 1998).

Marker-Locus Maps

Let us focus now on inaccuracies of the marker-locus
linkage map, which also affects the likelihood compu-
tation, through the term . A goal of the HumanP(g ,G )M M

Genome Project has been to develop reliable genetic
maps of marker loci, most frequently using a portion of
the CEPH reference pedigree set (Dausset et al. 1990)
for estimation of intermarker recombination fractions.
However, the overall number of available meioses in the
reference pedigrees is not sufficient for obtaining accu-
rate estimates of the genetic distances between closely
linked marker loci. In fact, it is often impossible to ge-
netically order tightly linked marker loci in the available
data sets, either because no recombination events may
have taken place between two neighboring marker loci,
or because the pair of marker loci are not both infor-
mative in the meioses where recombination did occur.
The locus order can largely be resolved through physical
mapping techniques, but this information is not always
readily available to the analyst. Furthermore, physical
distances cannot be simply converted into genetic dis-
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tances, given the poor fine-scale correlations between
physical and genetic distances (Chakravarti 1991; Jorde
et al. 1994).

To alleviate the problems posed by an unknown
marker-locus map, the map itself can be treated as a
nuisance parameter by use of the profile-likelihood tech-
nique. In contrast to the classic locus-ordering problem
where there is no definable null hypothesis (see Terwil-
liger and Ott 1994, chapter 14), the null hypothesis in
this situation is that the disease locus is unlinked to the
collection of marker loci, no matter what their order,
and the alternative hypothesis is that the disease locus
is linked to this collection of marker loci, irrespective of
their order. The likelihood ratio can be written in such
a way that these two hypotheses are nested, with a dif-
ference of one free parameter between them. If the po-
sition of marker locus 1 is arbitrarily defined to be

, the likelihood is maximized over all possible mapx = 01

positions of the other marker loci and the disease locus
relative to this fixed position under the alternative hy-
pothesis of linkage. Under the null hypothesis of no link-
age, the likelihood is maximized over all possible posi-
tions of the other marker loci, conditional on the disease
locus being unlinked to any of them ( ). In thex = ��D

case of, say, three marker loci and one disease locus,
there are three free parameters to estimate under the
alternative hypothesis (x2, x3 and xD; ), while underx = 01

the null hypothesis there are only two parameters to
estimate (x2 and x3; and ). The resultingx = 0 x = ��1 D

multipoint LOD score can be written as

max L(x ,x = 0,x ,x )x ,x ,x D 1 2 3D 2 3Q = log10 max L(x = ��,x = 0,x ,x )x ,x D 1 2 32 3

max L(x ,x )x ,x D iD i= log .10 max L(x = ��,x )x D ii

Note that there is no restriction in this formulation on
the order of the marker loci, as each of the xi could
assume any value on the range . This statistic is(��,�)
equally applicable to “model-free” and “model-based”
analysis (see Göring and Terwilliger 2000c). By contrast,
the conventional multipoint LOD score would be writ-
ten as

max L(x ,x = 0,x = c ,x = c )x D 1 2 2 3 3DZ = log10 L(x = ��,x = 0,x = c ,x = c )D 1 2 2 3 3

max L(x ,x )x D iD= log ,10 L(x = ��,x )D i

where the map positions of marker loci 2 and 3 are fixed
at and (on the basis of the best availablex = c x = c2 2 3 3

marker-locus maps) and are assumed to be true in the
analysis. Asymptotically, the behavior of these two sta-

tistics is predicted to be similar under the null hypothesis,
whereas, under the alternative hypothesis, Q should be
more powerful when the marker-locus map is poorly
characterized (see simulations below), as it will be in
virtually all practical situations.

Sex-specific differences in recombination rates, when
ignored, can have similar effects, since this is just another
type of error in the specification of the intermarker re-
combination fractions (though the locus order is not sex-
specific). It has been shown (Daw et al. 1998) that im-
proper specification of these parameters can lead to
errors in the conclusions of a multipoint linkage study.
It has likewise been demonstrated (Sall and Bengtsson
1989; Terwilliger and Ott 1994, chapter 19.3) that the
erroneous assumption of identical recombination rates
in spermatogenesis and oogenesis can mimic chiasma
interference in terms of the observed multilocus recom-
bination rates, which can likewise lead to erroneous con-
clusions from multipoint analysis (Weeks et al. 1991).
Solutions involving profile likelihoods analogous to
those discussed above can be implemented. One could
treat the recombination fractions as nuisance parameters
in a sex-specific manner, or one could treat a constant
ratio of the genetic distances in the two sexes as a nui-
sance parameter, jointly with the male (or female) re-
combination fractions (see Terwilliger and Ott 1992,
chapter 18). Chiasma interference can be dealt with by
an extension of this profile-likelihood protocol, as has
been described and implemented in a specialized versions
of the CILINK program by Weeks et al. (1991).

Correlations between Genotypes of Multiple Marker
Loci—Practice

Marker-Marker LD

For an example of the effects of not allowing for
marker-marker LD when it exists, let us consider an
extreme situation where there are three tightly linked
( ) diallelic marker loci which are in complete LD,v ∼ 0
such that only the haplotypes 1 1 1 and 2 2 2 exist in
the population under study. Let us return to the pedigree
shown in figure 1—only now let us assume that the
genotypes of the two individuals who are genotyped are
1 1 1/2 2 2 and 1 1 1/1 1 1. Let us assume, correctly,
that the frequency of the 1 allele at each of the three
marker loci was .2. (Since the marker loci are in complete
LD, this would also be the frequency of haplotype
1 1 1.) When the correct allele-frequency estimates are
used but absence of LD is incorrectly assumed, the max-
imum multipoint LOD score would be 1.5. However, if
complete LD is allowed for (correctly) between the
marker loci and the correct haplotype frequencies, .2
and .8, are used, the maximum multipoint LOD score
would be reduced to only 0.4. In this example, a sub-
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Table 3

Comparison of Conventional Multipoint LOD Scores to
Multipoint LOD Scores Treating the Marker-Locus Map as
a Nuisance Parameter with Profile Likelihoods, in
Situations where the Marker-Locus Map Is Incorrect

LOD-
SCORE

THRESHOLD

THEORETICAL

P VALUE

OBSERVED FREQUENCY

1-2-D-3-4 1-2-3-4-D

Z Q Z Q

Z 1 0.5 .0646 .80 .85 .06 .05
Z 1 1.0 .0159 .44 .52 .02 .01
Z 1 2.0 .0012 .16 .23 .00 .00
Z 1 3.0 .0001 .02 .06 .00 .00
EMLOD .1086 2.01 2.22 .123 .119

NOTE.—In the alternative-hypothesis simulations (100 rep-
licates), the marker-locus order (given with interlocus recom-
bination fractions in parentheses) is M1-(.05)-M2-(∼.025)-D-
(∼.025)-M3-(.05)-M4, whereas in the null-hypothesis sim-
ulations (100 replicates), the marker-locus order is M1-(.05)-
M2-(.05)-M3-(.05)–M4-(.5)-D. The bottom line of the table
gives the expected maximum LOD score (EMLOD) for each
statistic/locus-order combination.

stantial inflation of the LOD score arises solely because
of incorrectly specified marker-marker LD (parameter-
ized in terms of the marker-marker haplotype frequen-
cies). The explanation for this finding is that the fre-
quency of the 1 1 1 haplotype is greatly underestimated
as , when LD is not taken into(0.2)(0.2)(0.2) = 0.008
account, versus 0.2 in reality, which inflates the prob-
ability that the shared haplotypes have been inherited
identical by descent, as in the example of incorrect
marker-locus allele frequencies above. In realistic situ-
ations, it can likewise be demonstrated that there is a
systematic increase of the type I–error rate if the LD is
not modeled accurately.

Marker-Locus Maps

To empirically examine the properties of treatment of
the map of marker loci (marker-locus order and the in-
termarker genetic distances) as nuisance parameters by
means of profile likelihoods, the following simulation
study was performed: first, four marker loci were sim-
ulated in the entire panel of 64 CEPH reference pedigrees
(Dausset et al. 1990). The true map of marker loci was
M1-(0.05)-M2-(0.05)-M3-(0.05)-M4, and the marker loci
had 75% heterozygosity. The same four marker loci,
together with a disease locus positioned in the middle
between the second and the third marker locus (order
M1-(0.05)-M2-(∼0.025)-D-(∼0.025)-M3-(0.05)-M4)
were also simulated in a set of 50 nuclear pedigrees with
three to five affected children each and one affected par-
ent. The disease penetrances were ,f = 0.75 f =DD D�

; , with disease-locus allele frequency0.25 f = 0.025��

. For the computation of the conventional mul-p = 0.1D

tipoint LOD score, Z, on the data set of nuclear pedi-
grees, the recombination fractions between adjacent
marker loci were first estimated on the CEPH pedigrees
with CILINK (Lathrop et al. 1984), and the resulting
maximum-likelihood estimates of the intermarker re-
combination fractions were fixed in the subsequent anal-
ysis of the 50 nuclear pedigrees. In the computation of
the “map as nuisance parameter” statistic, Q, the CEPH
panel was not used at all, as the intermarker recombi-
nation fractions were treated as nuisance parameters in
the actual analysis of the nuclear pedigrees. This pro-
cedure was repeated 100 times to get an estimate of the
difference in the power of the two statistics (table 3). By
design, the simulated situation was not very powerful,
in order to illustrate more clearly the difference in per-
formance of the two methods. Note that Q is more pow-
erful than Z for all LOD-score thresholds considered. In
other examples (data not shown), the increase in ex-
pected LOD score from use of Q instead of Z ranged
from 2% to 30%, depending on the sample sizes,
marker-locus density, and mode of inheritance of the
disease. For more-distantly-spaced marker loci, the effect

is attenuated, as the multilocus likelihood is less sensitive
to small errors in the estimates of larger recombination
fractions. When fewer reference pedigrees were used to
estimate the marker-locus map—and, in practice, only
10 CEPH pedigrees are often typed—the gain in power
was greater, as expected. With larger multigenerational
pedigrees, the gains in power can also be greater, since
phase is more often known, making the effect of errors
in the intermarker recombination fractions potentially
larger. The simulated example illustrates the effects of
reliance on a poorly characterized genetic marker-locus
map in even the simplest of situations.

To verify that under the null hypothesis there is no
inflation of the LOD score when the intermarker dis-
tances were treated as nuisance parameters, the same
simulation procedure was performed with the disease
locus unlinked to the set of marker loci. As can be seen
in the same table (table 1), the distribution of both sta-
tistics was very similar, suggesting that the nuisance-pa-
rameter statistic does not lead to an inflation of the type
I error–rate relative to conventional LOD-score analysis.

Discussion

Likelihood analysis is a powerful and intuitive vehicle
for statistical inference if the probability of a given set
of observed data can be written as a function of a set
of parameters. Whenever the null and alternative hy-
potheses can be fully described with such parameters,
the likelihoods under each hypothesis can be compared
to evaluate the evidence in support of one hypothesis
versus another. One need not be interested in making
inferences about all parameters. In fact, the values of
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certain parameters are irrelevant and/or impossible to
evaluate, in many cases. Either such parameters can be
fixed, a priori, to some values that can be assumed for
the purpose of the analysis, or the likelihood can be
maximized with respect to those parameters by means
of profile likelihoods. If the likelihood is maximized in-
dependently over these parameters under both hypoth-
eses (i.e., nuisance-parameter analysis by means of pro-
file likelihoods), then the difference in the two
likelihoods would provide evidence about the parame-
ters that are the basis of inference. In this article, we
have discussed situations in which the use of profile-
likelihood treatment of nuisance parameters may be
preferential to assumption of some fixed values for these
parameters from the outset. This technique can be useful
in dealing with parameters that are not the primary focus
of inference, such as allele frequencies of the marker loci,
LD between them, marker-locus maps, and the sex-spec-
ificity thereof, as shown here. Other parameters related
to marker loci and their map—including inbreeding co-
efficients (Agarwala et al. 1999; Hovatta et al. 1999)
and parameters describing chiasma interference (Weeks
et al. 1991) and genotyping errors (Göring and Terwil-
liger 2000b)—could be dealt with in similar fashion.
However, parameters of the disease locus underlying the
phenotype through which the sample is ascertained are
typically not straightforward to deal with in this manner,
because of the effects of ascertainment bias. For ex-
ample, the ascertainment of multiplex pedigrees would
cause estimates of the mode of inheritance and/or dis-
ease-locus allele frequencies to be strongly biased, unless
ascertainment correction was made (which is typically
impossible, as real-world ascertainment schemes are
rarely mathematically tractable). If pedigrees are ran-
domly ascertained, without regard to phenotype, or if
pedigrees are ascertained on the basis of a phenotype
which is uncorrelated with the phenotype being studied,
then one could compute profile likelihoods over trait-
locus parameters as well (e.g., means and variances of
quantitative traits, or penetrances of qualitative traits
[Almasy and Blangero 1999]). Other trait-locus param-
eters, such as those related to epistasis and oligogenic
inheritance in the extended admixture test (Terwilliger,
in press) can be treated as nuisance parameters, even
when the data is ascertained on the basis of the
phenotype.

Unfortunately, difficulties may arise when too many
(often nonorthogonal) parameters are estimated jointly,
especially if the size of the data set is small, because of
the risk of overfitting some model to the data. In the
case of marker-locus allele frequencies and marker-
marker haplotype frequencies, there is often little dif-
ference between the estimates when the disease locus is
linked and when it is not, so that, when the large num-
ber of nuisance parameters becomes a concern, one

could estimate the allele or haplotype frequencies under
the null hypothesis of no linkage to the disease locus
and could fix those estimates for the likelihood com-
putation under the alternative hypothesis of linkage (see
Boehnke 1991). This would avoid, in a conservative
manner, some of the distributional complexities of like-
lihood ratios with more nuisance parameters than data
points (see Eguchi 1991). Simulations presented here
and others not shown indicate that the statistics with
marker-locus allele frequencies or marker-marker hap-
lotype frequencies as nuisance parameters behave well
in the moderately-sized simulated data set of 350 nu-
clear pedigrees. Similar results were obtained for the
marker-locus map locations treated as nuisance param-
eters. If the likelihood is maximized over both allele/
haplotype frequencies and map positions jointly, the dis-
tribution may become quite complicated—especially as
many such parameters are not completely orthogonal.
Nonorthogonality of nuisance parameters can lead to
likelihood-based statistics that deviate from their pre-
dicted distributions (e.g., Terwilliger 1995, 1996), es-
pecially in “small” samples, and care must be taken to
avoid the consequences of these problems in practice.

The field of human genetics is moving rapidly towards
analysis of complex multifactorial phenotypes against
dense maps of tightly linked single nucleotide poly-
morphisms (SNPs) (Terwilliger et al. 1992; Collins et
al. 1997; Pennisi 1998). These marker loci are very sim-
ilar in their statistical properties to the restriction frag-
ment length polymorphisms (RFLPs) (Botstein et al.
1980) which were popular in the last decade (most
RFLPs are, in fact, SNPs that were studied with different
experimental techniques). At that time, it was widely
appreciated that errors in the assumed marker-locus al-
lele frequencies would lead to high rates of false posi-
tives (see Ott 1992). When microsatellite marker loci
were introduced, this problem dissipated somewhat—at
least in analysis of large pedigrees—because the marker
loci were sufficiently informative that the situations in
which marker-locus allele-frequency errors lead to high
false-positive rates were encountered much less fre-
quently (those situations being when parental genotypes
could not be uniquely determined on the basis of their
children’s genotypes and common alleles were falsely
assumed to be rare). Investigators may have forgotten
the severity of the consequences of allele-frequency er-
rors in the relatively uninformative RFLPs, especially
when parents of affected individuals were unavailable
for genotyping (an increasingly common situation as we
move towards analysis of chronic diseases of old age).
In LD analysis, this has been recognized throughout
(Falk and Rubinstein 1987), leading to the common
platitude that case-control studies suffer a risk of false
positives when the cases and controls are not well
matched (meaning that the marker-locus allele frequen-
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cies were inaccurately estimated from the ascertained
control sample [Chase 1977]).

In the days of RFLPs, the genetic maps (e.g., Morton
and Collins 1990) derived from linkage analysis in the
CEPH pedigrees (Dausset et al. 1990) were not very
accurate either, because the RFLPs were individually
rather uninformative and the total pool of informative
meioses available for study was accordingly too small
to accurately estimate even the relatively large recom-
bination fractions between the RFLPs. When microsa-
tellites were studied, a larger proportion of meioses was
informative, increasing the accuracy of the resulting
maps based on such small data sets, though for many
chromosomal regions even these maps can be inconsis-
tent (compare the maps of Murray et al. 1994; Dib et
al. 1996; Broman et al. 1998, for example). Now, with
SNPs, the accuracy of the genetic maps will likely be
much worse, because the distances between them are
much smaller (thus requiring more informative meioses
to estimate the genetic maps), while, at the same time,
the proportion of informative meioses in a given data
set (e.g., the CEPH reference panel) will be much
smaller. The effects of errors in these maps may become
more significant as more and more marker loci are being
analyzed jointly, despite the popular belief to the con-
trary (see Kruglyak 1997). While the SNPs may be phys-
ically ordered, and their physical map positions known
accurately, this does not help us that much in linkage
analysis because it is the interlocus recombination frac-
tions that are critical to the accurate computation of
multipoint pedigree likelihoods, and the correlations be-
tween physical distance and genetic distance are poor,
even on a macroscopic scale (Chakravarti 1991; Jorde
et al. 1994). There is substantial evidence that the cor-
relation is even more unpredictable on the microscopic
scale (e.g., Lichten and Goldman 1995; Ajioka et al.
1997; Clark et al. 1998; Mohrenweiser et al. 1998).
Furthermore, the recombination rates are often quite
different in spermatogenesis and oogenesis (Haldane
1922; Tanzi et al. 1992; Broman et al. 1998; Mohren-
weiser et al. 1998), and this sex difference also needs
to be allowed for in order for multipoint analysis to be
efficient and powerful (see Terwilliger and Ott 1994,
chapter 18, 19.3). Since a dense set of SNPs must be
analyzed jointly, in a multipoint manner, if there is to
be any power in linkage or LD analysis, problems may
arise from correlations between genotypes of tightly
linked marker loci. It is clear that when SNPs are very
closely linked, there may be substantial LD between
them (e.g., Clark et al. 1998), which must be allowed
for in the analysis. Furthermore, chiasma interference
may play an important role, and it may be necessary to
allow for it as well. However, if one allows for either
of these phenomena, the application of Markov models
(Lander and Green 1987; Terwilliger et al. 1992) to the

computation of multipoint likelihoods becomes impos-
sible, since the requisite “memoryless” Markov prop-
erty no longer applies as one moves from marker locus
to marker locus along the chromosome.

In conclusion, it is a major drawback of most mul-
tipoint methods of analysis that marker-locus maps
must be assumed to be known accurately, while in re-
ality fine-scale intermarker recombination fractions can-
not be accurately estimated without thousands of in-
formative meioses. Most simulation studies of the
power of multipoint methods simulate a fixed map of
marker loci with known allele frequencies, and perform
the analysis assuming that the marker-locus map and
other parameters are known with 100% accuracy, sig-
nificantly inflating the predicted power of the investi-
gated approaches in practice. This is probably one fac-
tor contributing to the widespread, though gradually
dissipating (see Pennisi 1998; Terwilliger and Weiss
1998; Terwilliger and Göring 2000), support for the
hypothesis that a dense genome-spanning map of dial-
lelic marker loci will be ideal for the mapping of genes
predisposing to complex disease (see Terwilliger et al.
1992; Kruglyak 1997). When the incumbent errors in
map distance estimates and marker-locus allele fre-
quencies are allowed for, the predicted sample size re-
quirements and requisite density of genotyped SNPs
might increase dramatically (see Terwilliger et al. 1992).
This should be investigated in more detail before one
abandons the polymorphic microsatellite marker loci
currently in use (see Terwilliger et al. [1998] and Ter-
williger and Weiss [1998] for further reasons to stick
with highly polymorphic microsatellite marker loci). It
is hoped that the use of statistical approaches like those
described here may alleviate a few of the basic criticisms
of dense maps of diallelic marker loci.

Software

To obtain the following software (written for VMS using
DEC Pascal), please contact the authors by e-mail
(jdt3@columbia.edu, hgoring@darwin.sfbr.org). A Dig-
ital Unix version is available for some of the software
and is expected to be available shortly for the remainder.
a) DOWNFREQ is a utility program for gene counting
to generate starting values for marker-locus allele fre-
quency estimation with ILINK. b) Shell software is avail-
able for performing two-point linkage analysis with
marker-locus allele frequencies as nuisance parameters,
which calls DOWNFREQ and repeatedly restarts ILINK
with varying sets of starting values until some specified
convergence criteria are met. Note that this mimics the
manual manipulations one normally has to do to get
good convergence from ILINK when varying parameters
other than the recombination fraction (Lalouel 1979).
The same set of shell scripts also performs a similar
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procedure allowing for LD between trait and marker
loci in “pseudomarker” analysis (see Göring and Ter-
williger 2000c for details). c) For multipoint analysis
with the marker-locus map as a nuisance parameter, the
MULTI-ILINK program (Terwilliger 1994) has been up-
graded to allow for likelihood maximization over all
possible marker-locus orders, as described in this text.
Earlier versions maximized the likelihood only over the
intermarker recombination fractions for a fixed marker-
locus order.
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